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The singularities of solidification of an axisymmetric jet of mineral melt mov- 
ing in a gas medium are numerically investigated. 

Let us examine the jet flow of a mineral melt in a gravity field (Fig. i). Of practi- 
cal interest are computations of the flow and cooling parameters of the accelerating jet. 
Optical pyrometer measurements showed that for an initial melt temperature on the order 
of 1500~ the surface of an incident jet of 2-3 cm diameter is cooled 50-60~ at dis- 
tances of around 1 m independently of the discharge. The viscosity, density, coefficient of 
melt heat conductivity, and coefficient of interphasal tension here vary negligibly [I] so 
that the model of a viscous fluid flow with an interphasal interface can be used here [2]. 
In this paper we neglect the influence of compressibility and radiation on the flow of the 
external medium. The solution of the problem of the congealing of slowly flowing thin jets 
of melted glass with an initial temperature on the order of 1600=K and l-mm diameter [3] is 
known from the literature. This is the other limit case of the flows examined in the present 
paper. 

We shall examine the combined flow of the melt and the medium in a cylindrical O, r, z, 
coordinate system coupled to the jet axis (Fig. i). The origin is at the center of the 

exit hole. The flow under consideration is symmetric in the azimuthal direction and the ve- 
locity in this direction is zero. We neglect mass transfer between phases. The flow charac- 
teristics to be determined are the velocity, pressure, and temperature distributions in the 
jet and in the environment, as well as the interphasal surface. It is shown in the paper 
that the influence of the medium on the jet heat elimination because of convection is slight 
compared to the thermal radiation of the jet surface. 

i. Formulation of the Problem 

The combined flow of a nonisothermal, immiscible fluid in a jet and its environment is 
described by the Navier--Stokes and energy equations [2]: 

duj ~ - - - V p j + - - v J  Auj + 2 - - . /  k~ (1) 
dt vl Re Fr 

dOj • 
V.Uj = O, - -  -- - - A O j  (7=1, 2). (2) 

dt • 

The term corresponding to Rayleigh dissipation is omitted from the energy equation since 
the estimates performed indicate it issmall compared with the remaining components. Conse- 
quently, the hydrodynamic problem can be solved independently of the thermal problem. The 
equation of the unknown jet surface has the form 

dh 
= v, y = h ( x ) .  ( 3 )  

dt 

The boundary conditions are: axial symmetry of the flow, continuity of the velocities 
and tangential stresses, a jump in the normal stresses caused by surface tension, continuity 
of the temperature and heat flux on the jet surface, and the condition of making the transi- 
tion into the uniform unperturbed flow in the environment far from the jet surface is satis- 
fied. These conditions can be represented in the form 
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Fig. i. Schematic dia- 
gram of the jet of melt. 
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(7) 

(8) 

(9) 

u~ ~ ue (x), 0~ -~ 0e (x), v -~  oo ({ b I < 1). (10) 

The square  b r a c k e t s  he re  deno te  the  jump in  the  a p p r o p r i a t e  q u a n t i t y  on the  i n t e r p h a s a l  
s u r f a c e .  Cond i t i ons  (5 ) - (9 )  are  s a t i s f i e d  f o r  y = h ( x ) .  The b o u n d a r y - v a l u e  problem (1 ) -  
(10) should  be supplemented  by c o n d i t i o n s  a t  x = 0 and x + ~. Values  o f  the  d i m e n s i o n l e s s  
parameters of the problem as well as of the independent and dependent variables are deter- 
mined from the formulas: 

1 _(I--po) GR, Re----P'RU, (11) 
Fr U 2 ~tt 

Pe-P~Cv1RU Bo--~  a W e -  Y 
Z, )~, p,UaR 

(x, y ) =  (z, r)1~-', (u, Ue, v ) =  (u,, U,e ,  v,)U-i,  

zj P*J P'~ (i •  , p j = ~ ,  Po= : 1 ,  2), 
9jCvi PJ U'~ P~ 

o -  r = r ~  AT , A T -  T O -  T~(0), r~ = Te(0), (12) 

2 _ { 1  /J l 1 dh 
Rs h l S b  I F T - ~  u ' b = / ~ ( x ) -  dx " 

The asterisk denotes dimensional quantities. In relationships (11)-(12), U is the maximal 
escape velocity of the melt through a nozzle of radius R; G, acceleration of gravity; T o , 
maximal jet temperature at z = 0; TE(Z) , temperature of the environment; u, = {u~, v,}, axial 
and radial velocity components; p,, pressure; RS, effective radius of curvature of the jet 
surface; o = 5.67"i0 -s W/mZ.deg 4, emissivity of an absolute blackbody; ej(j = i, 2), dimen- 
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sionless coefficient of grayness of the jet and medium surfaces, respectively; A, Laplace 
operator; V, gradient operator; and d/dt, substantive derivative. 

The boundary condition 

0 u --bO~ 
' 1 ~  H- Bix0 = 0 ,  g = h(x) (13) 

is used in place of (9) in engineering computations to describe the heat elimination of a 
jet surface moving in a gas (b -- 0 [i] in the case of a cylindrical jet). Here 

Bix-- ocxR = ~_!~ Nu~ = ;% Nu~, 

Nux ---- 0,0205 Pr ~ Rex, Re~ = 2p~h, (r) u,  (z, h , )  , (14) 
1% 

which describe the criterial dependence of the heat elimination coefficient of the heated 
surface of a cylindrical tube of radius h,(z), equal to the local value of the jet radius, 
and the gas flow whose velocity equals the local value u,(z, h,), and the velocity of the 
jet surface relative to the fixed medium [4]. In (14), u x is the coefficient of heat elimi- 
nation of the interphasal surface, Pr is the Prandtl number. It is shown below that the dy- 
namic influence of the medium on the interphasal surface can be neglected in a number of 
cases, and the boundary conditions 

u ~ u + v ~ x + ~ (  1--o 2v~u -[- - ~ )  - -0 '  (15) 

P l - -  PoP~ = We R- - - -~  ( 1 -  b2)Re ( l + b ~ ) v ' u + g ,  
(16) 

can be considered in place of (5)-(7). 

The problem (I)-(i0) has a nontrivial solution in the case of a free cylindrical jet of 
constant radius [5]: 

h - -  1, u~ (x, y) = u~ (y), v~ ~ O, O~ (x, y) ~ O~ (y). 

Under real conditions, the fluid in the jet is subjected to the action of mass forces, inter- 
phasal tension, and the external medium, which implies acceleration and redistribution of the 
velocity across the jet, and therefore, a deviation of its shape from the cylindrical. 

2. Flow Investigation Method 

When the parameters Re, Pe >> i, and the radial velocity component in the initial sec- 
tion is small, the change in the solution across the jet is much greater than in the longi- 
tudinal direction, i.e., 

a a 
<< 

Ox Oy 

To the  a c c u r a c y  o f  h i g h e r - o r d e r  i n f i n i t e s i m a l s ,  p roblem ( 1 ) - ( 1 0 )  can be r e p r e s e n t e d  in  
the form 

utuix + v~u~ u = - -  Pi~ + (yu~)y + 1 
yRe Fr (17) 

0 = - -  P~u, y u ~  + (YVi)u = O, 

uiOt~ + v~O~y = .. (YOlu)u 
g Pe 

(18) 
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u#2 s + v~u~. = - -  P2s + Vo (hiu2,d. , (19) 
ht Re 

0 = - -  P',.n, (hiu2)s q- (hiv~)n ---- O, (20)  

u.,O~_ s + V202 n = xo(hl02n)n , (21) 
hi Pe 

uih = vi, y = h (x), 

uiv = O, y = O, ui = u. ,  ulv ~oU2n, Pt 9oP2 + 1 . ---- = - -  , y = h ( x ) ,  (22) 
h We 

. . . .  0 q- -~--~] , y = h ( x ) ,  (23)  0 t y  0, y 0, 01 02, 01y ~,002n, - -  8t Bo T ~ ~4 

u2---~Ue(x) ,  02 -+  0F_ (x), y - ~ c c ,  (24)  

'v2 ~2 x2 
~ ' o - -  , ~1 '0 - -  , NO = - -  

"q ~i • 

ut (0, V) = U~ (9), u,, (0, n) = U2 (n), h (0) = 1, 
(25) 

01(0, Y)= El(Y), 02(0, n)=~o(n). (26) 

The flow of the external medium is here considered in an internal orthonormal coordinate sys- 
tem S, n, ~ coupled to the interface [6], and hi(S, n) is the Lame parameter, 

(27)  

To infinitesimal accuracy O(h~) it 
o 

thermal radiation of the medium in 
omitted. 

can be assumed that cos ~ = I, S = x. For T E 310~ the 
(9) is negligible, and the corresponding term in (23) is 

We use the method of equal discharge surfaces [6, 7] to compute the combined flow of a 
heated jet and the environment. We will solve the energy equation simultaneously with com- 
puting the flow field. We reduce (19) to a system of ordinary differential equations to de- 
termine the values of the solution on the stream surfaces y(m)(x): 

a(m) h (m) _ _  

1 Ul 
I (o ,yy+%) ,o~" ' ) (o )=~ 'n )  

Pe y 

(m = 1, 2 . . . . .  M). 
(28)  

Here the dot denotes differentiation with respect to the axial coordinate. As in the flow 
computation, we represent the reduced temperature in the jet in the form of a sum of pairs 
of components. The former corresponds to the homogeneous condition on the axis and the in- 
homogeneous condition on the jet surface. We approximate it by using the very same system 
of functions V~(x, y) that is used to solve the hydrodynamic problem, and we take a quadrat- 
ic as the latter component: 

h (x) 

Ot (x, y) = - -  

M 

do (x) y2 + E d~ (x} V. (% 
h (x) 

(29) 

The coefficients d~(x) are selected from the condition that (29) agrees with the exact solu- 
tion 01(m)(x) on the stream surfaces y(m)(x) computed by means of (2.10) and (2.11) in [6] 

1094 



TABLE i. Values of the Dimensionless Temperature on Jet Sur- 

face 

8O 

8O 

8O 

8O 

8O 

8O 

gI 

1 

0,9 

0,8 

0,7 

0,6 

0,0 

Qh-lO-" kg /h  

0 S = 0 (x. h) 

~,=2.5.1 o~ k g /  
m B 

2 0,92432 
1 0,92088 

2 0,93065 
1 0,92734 

2 0,93715 
1 0,93401 

2 0,94387 
1 0,94093 

2 0,95080 

2 0,99775 

1 0,99747 

o,=3.1o~ kg /  
m s 

0,92980 
0,92659 

0,93542 
0,93266 

0,94182 
0,93892 

0,94809 
0,94538 

0,95455 

T ~ = 1593 K; T E = 293 K; Vo = 0.04183; Po = 5.172"10-"; %o = 
1.784"10-=; U E = O; R = 0.015 m (U = 0.314 m/sec; Fr = 1.4873; 
Re = 13.10; Bo = 0.8997; Pel = 9.8464.103; Pe= = 2.3746"102). 

Qh -- hourly melt discharge. 

and by (28) from this paper. Determination of dp(x) reduces to solving a system of linear 
algebraic equations in successive sections. The matrix of the system mentioned is exactly 
the same as in the velocity computation, because of the selection of the functions Vp(n). 
Consequently, it is inverted just once in each spacing in x and the computation of the flow 
and the solidification of the melt jet is performed without substantial enlargement of the 
volume of calculations. 

3. Flow of a Jet with a Uniform Velocity Profile 

Results of computing jet flows in a gas permitted us to obtain a formula to estimate 
the size of the domain for a uniform velocity profile build-up in a jet Lr~ 0.1"Re [6, 7]. 
The dynamic influence of the medium on the fluid flow in the melt jet can be neglected since 
the value is ~o ~2"I0 -5 and the fluid velocity is 4-5 m/sec at a range of 1-1.5 m from the 
melt supply site. Hence, for x ~L r the velocity distribution in the jet should remain al- 
most uniform. 

Let us seek the solution of problem (17), (21), (22), (25) for x > L r in the form ul = 
u(x). Equations (17), (21) and the boundary conditions (25) permit a problem with initial 
conditions to be obtained 

us 1 
= , v = - - O . 5 y u ,  uh=--O,5h~. ( 3 0 )  

F r  

The dot in (30) denotes differentiation with respect to x. We represent the solution of (30) 
in the form 

2x 

~(x )= .  I + F--7- 

1 
h-- 

, 9-- 

2x 
2 F r  1 + -- 

rF 

u(0)=1, h(0)=1 

(31) 

We modify the thermal problem (18), (20), (23), (24) with (31) taken into account. We 
execute the change of variables X = x, Y = y/h(~), and transform the derivatives according 
to the formulas " 

0 = a _ y  h a a Y u, a a _ 1 a ( 3 2 )  
ax ax h a Y -  07 + 2  u o Y '  oF h OY 
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We substitute (32) into (18) and the boundary conditions (23). After manipulation, we ob- 
tain the boundary-value problem 

01X~--- ~ O l r  v -]- , 01y ~- 0, Y = 0, (33) 

{ ( T~ 
O,r=h(X) ~,oOv~--e, Bo 0~+~-~-) I , Y = I .  (34) 

In the case when the heat-elimination condition on the jet surface is taken in form (13), 
(14 ), the boundary condition (34) with radiation taken into account is converted to the fol- 
lowing : 

01v=--h(X)  Bi~0 i + e i B o  0 i + - A ~ ]  j, Y =  1. (35) 

The thermal problem (33), (35) was numerically solved by the method of lines [8], with (31) 
taken into account. For fixed R and U, the computations were performed for different values 
of the grayness index et = 0; 0.4; 0.6; 0.7; 0,8; 0.9; i. The results of the solution are 
presented in Table I for El (g)~l . For ci = 0 cooling of the jet surface is slight. As 
el increases, the drop in temperature increases. The radial temperature distribution in the 
jet differs from the uniform distribution only near the interphasal surface. A relative 
change in the temperature at x = 80 is 0.2-0.3% for a twofold change in the melt supply. 
Cooling of the jet surface in the case 0~ = 3"i03 kg/m 3 is less than for 9t = 2.5"103 kg/m 3. 
The change in the jet surface temperature is 

TO -- T (z, h,) = { 1 -- 0~ (x, h)} AT. 
The temperature drop will be greater, the greater the magnitude of the thermal head AT. 

Presented below, for comparison, is the solution of the adjoint thermal problem (31), 
(33), (34), (19), (20), (23)-(26) in the case of a jet with uniform profile flowing in a 
fixed medium. 

4. Description of the Flow and Heat Transfer in the Medium 

To describe the flow of the medium in the transition domain near the interphasal sur- 
face, we use the method of integral relations. The formulas to compute the thickness of the 
dynamic layer ~u(S) for a parabolic longitudinal velocity distribution are derived in [6]. 
Approximating the temperature profile in the thermal layer by a quadratic trinomial and in- 
tegrating (19) with respect to n between the limits O~n~6o(S), we obtain an equation to de- 
termine the thickness of the thermal layer 

6o=-~-~-p { 2huog(S)_~o_pe - - L v }  , (o) = 8 g .  

(36): The following notation is used in the right side of 

1 U~g(2h+6o) - -A- -o) [C+6oE) ,  o ~ 1 ,  

Av 

I 1 {5Ue g (2h + ~o)-- 2 (6o + 3h) fg}, co > 1, 

/ U~ 6o {4 (gh)" + g6o}-- 6o (B + D6o) + 6~mz (C + 6oE), co ~ 1, 
- i T  

Lp 
Ue 6o {4 (gh)" + "g 6o} -- @0 {(fg)" (6h + 6o) + 6 gh}, > 1, 

A = G~ +26oG.~, B = z, ( fgh) ' ,  C = [gh  .2~ - -  5 , O = z2 (~gh)', 
30 

E = [ g h ~ - ~  "z , Gl = z i fgh ,  G~ = z J g ,  o = 6o/6u, 
30 

(36) 
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Fig. 2. Thermal and dynamic layer thicknesses. 

~ " 9 i 

o - - t f  4 ,9 8 7 8 

20 40 60 x 

Fig. 3. Dependence of the reduced temperature on the 
jet surface for different grayness coefficients: 1-3) 
sl = I; 4) 0.9; 5) 0.8; 6) 0.7; 7) 0.6; 8) 0.4; 9) 0; 
i0) computation taking account of the velocity profile 
change; II) experimental data under conditions corre- 
sponding to the tabulated results. Qh = 2"103 kg/h. 

I0 + (co -- 5) co 5 + (o~ -- 4)r 
Z i = ~ Z 2  ~ 

30 60 

f (S) = Ue (S) - -  U, (S, h); g (S) = 0~. (S) - -  O, (S, h). 

Lj = f (s) (i = l, 2), L,o = ( Ue3 

Here 0 e =  0, b E = 0 .  

For  c o m p l e t e n e s s ,  we p r e s e n t  t h e  problem to d e t e r m i n e  6u(S) :  

2voh ff~'L2+ 6~Ll + Ue Io 
(25~L~o + L~o) "~ = 6~ Re [ ' 

f / h ,  L2o= Ue 
5 ] 12 

f 
30 �84 

(37) 

u2 (S, n) • Ue (S) - -  f (S) { 1 
(s) (s) 

(38) 

5. Computation Results 

The problem (31), (33), (34), (36), (37) with initial data was numerically solved by 
the Runge--Kutta method. The results of the solution are represented in Figs. 2-4. Values 
of the thickness of the thermal and dynamic layers are shown in Fig. 2 for different values 
of 6u ~ ~e ~ Curves 1-3 are ~e(S), while I'-3' are ~u(S), respectively, for the following 
initial values of the layer thickness: i') ~u ~ = 2, ~8 ~ = 0.5; 2') ~u ~ = 0.2,~e ~ = 0.5; 3) 
~u ~ = 2, 80 ~ = 0.05. 

Starting with a certain x, the thermal layer thickness is greater than the dynam&c lay- 
er thickness independently of their initial values. For sufficiently large x the sizes of 
the appropriate layers are close in magnitude. The dependence of the reduced temperature on 
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Fig. 4. Temperature profiles across the jet at different sec- 
tions: a) x = 20; b) 40; c) 80; i) r = 1.0; 2) 0.8; 3) 0.6. 

the jet surface on x is shown in Fig. 3 for different values of the grayness coefficient r 
As is seen from the figure, the results of the solution obtained by all three methods differ 
insignificantly. The temperature profiles across the jet are represented in Fig. 4 for the 
sections x = 20, x = 40, x = 80 ( ~ (y)~1 in the initial section). 

Computations were performed of congealing of the melt jet with nonuniform initial velo- 
city and temperature distributions without taking account of the thermal radiation. The ini- 
tial profiles used were 

FoCY)=e+(1--2e)(1--yZ), e = O ,  1, O~.y~<~l, (39) 

The slight influence of the selection of ~u ~ ~@o on the final velocity and temperature 
distribution in the jet and in air was shown first. Values of the solutions for x = 4 were 
compared in the following cases 

~ = 0 , 0 5 ,  8~ =0.01; ~ =0,05, ~ = 0 , 0 0 1  and 

g = o,o 1, ~ = o,o 1. 

The velocity profile in the form (39) was selected as initial profile. The initial tempera- 
ture profile was taken uniform Ei(y)~1. 

Results of computations of a jet with uniform initial velocity profile and initial tem- 
perature distribution (40), obtained by the method of lines" [8], as well as by the method of 
equal discharge surfaces, turned out to be close to each other. 

Computations performed by using the method of [6, 7] exhibited a slight dependence of 
the flow field on the initial velocity profiles with nearby mean-mass values. The initial 
temperature distribution has substantial influence on the nature of jet solidification. In 
this series of computations, the initial velocity and temperature distributions were selected 
both uniform and also in the form of (39) and (40). 
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NOTATION 

u{u, v, 0}, velocity vector; p, pressure; U~ T o , maximal velocity and maximal jet tem- 
perature upon escaping from a nozzle of radius R; UE, TE, velocity and temperature of the 
external medium; Uo(y), E0(y) , initial velocity and temperature distributions; ~, reduced 
temperature; y = h(x), equation of the jet surface; ~u, d0, thicknesses of the dynamic and 
thermal layers in the medium; y, coefficient of interphasal tension; ~i, ~j, Pj, %=, CVj, ~j, 
dynamic and kinematic viscosity, the density, the heat conductivity coefficient an~ specific 
heat of the jet (j = i) and the medium (j = 2), as well as the grayness coefficient of the 
jet and surrounding gas surfaces; ~, Stefan--Boltzmann radiation constant; Re, Pe, Pr, Fr, 
We, Bo, Bix, Nux, ~o, ~o, ~o, ~ , dimensionless parameters of the problem. 

Io 

2. 

3. 

4. 

5. 

6. 

7. 

. 

LITERATURE CITED 

G. F. Tobol'skii, Mineral Wool and Items Therefrom [in Russian], South Ural Publo, 
Chelyabinsk (1968), pp. 190-207. 
L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian], GITTL, 
Moscow (1953), pp. 65-71. 
J. H. Sumunu and C. A. Brown, "The effect of heat transfer on the flow of high-tempera- 
ture glass through small nozzles," Paper No. WA/HT-12, Am. Soc. Mech. Eng. (1970). 
M. L. Mikheev, Principles of Heat Transfer [in Russian], i Gosenergoizdat, Moscow-Lenin- 
grad (1949). 
N. Bohr, "Determination of the surface tension of water by the method of jet vibration," 
Phil. Trans. R. Soc. (London), A209, 281-317 (1909). 
V. E. Epikhin and V. Ya. Shkadov, "Flow and instability of capillary jets interacting 
with the environment," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 50-59 (1978). 
Vo E. Epikhin, N. M. Zhavoronkov, V. A. Malyusov, N. S. Mochalova, L. P. Kholpanov, and 
Vo Ya. Shkadov, "Computation of film and jet laminar flows in the initial section," 
Nonlinear Wave Processes in Two-Phase Media. Materials of the 20th Siberian Thermo- 
physical Seminar, 1976 [in Russian], Siberian Branch, Academy of Sciences of the USSR, 
Novosibirsk (1976), pp. 213-221. 
Io S. Berezin and N. P. Zhidkov, Methods of Calculation [in Russian], Vol. 2, GIFML, 
Moscow (1960), pp. 537-561. 

1099 


